



# **Tantalum Capacitor (SCL Series)**



The SCL series is a slim type of conventional SCS series.

Its ability is same as SCS series even though it has thinner thickness that is max. 64% of SCS series.

# **General Features**

- Environment-Friendly (Pb-free) tantalum capacitor
- Low-profile case size
- Reduced thickness up to 64% of SCS series
- Molded Case available in four case codes.
- Compatible with automatic pick and place equipment.
- Meets or Exceeds EIA standard 535BAAC .
- Terminations: 100 % Sn , RoHS compliant.

# **Applications**

- Reduced electronic equipments : mobile phone, PDA, MP3, LCD module etc. Smoothing
- Circuit of DC-DC Converters & Output side of AC-DC Converters
- De-Coupling Circuit of High Speed ICs & MPUs
- Various Other High Frequency Circuit Applications

# **Part Numbering**



Abbreviation of Tantalum Capacitor

Type of Series

Rated Voltage

Capacitance Tolerance

Capacitance Tolerance

Case size

Packing

**Packing Polarity** 





# ABBRIVIATION OF TANTALUM CAPACITOR

# TYPE OF SERIES

The symbol shows the type of the capacitor.

SCL : Samsung Capacitor Low-profile series

# RATED VOLTAGE

| Symbol | DC Rated Voltage | Symbol | DC Rated Voltage |
|--------|------------------|--------|------------------|
| 0E     | 2.5              | 1C     | 16               |
| 0G     | 4                | 1D     | 20               |
| 0J     | 6.3              | 1E     | 25               |
| 1A     | 10               | 1V     | 35               |

# CAPACITANCE

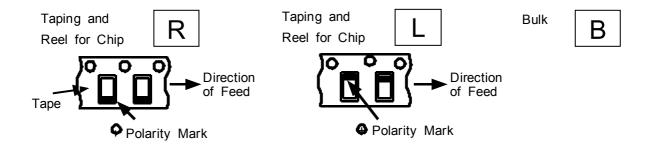
| Symbol | Capacitance (μF) | Pico Farad (pF)    | Symbol | Capacitance (µF) | PicoFarad (pF) |
|--------|------------------|--------------------|--------|------------------|----------------|
| 105    | 1.0              | 10×10⁵             | 684    | 0.68             | 68×10⁴         |
| 106    | 10.0             | 10×10 <sup>6</sup> | 475    | 4.7              | 47×10⁵         |

# **O CAPACITANCE TOLERANCE**

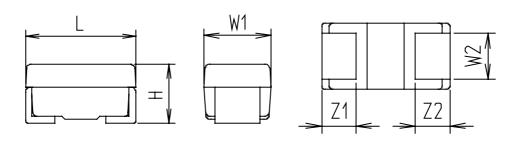
| Symbol | Tolerance(%) | Symbol | Tolerance(%) |
|--------|--------------|--------|--------------|
| K      | ±10          | М      | ±20          |

# CASE SIZE

| Case | EIA Code |
|------|----------|
| S    | 3216-12  |
| Т    | 3528-12  |
| U    | 6032-15  |
| V    | 7343-18  |







# **7** PACKING

| Symbol | Packing Code |  |
|--------|--------------|--|
| Α      | 7 inch       |  |
| С      | 13 inch      |  |

# **3** PACKING POLARITY



# **APPEARANCE AND DIMENSON**



| Code | EIA Code | DIMENSION (mm) |           |                |         |          |  |  |
|------|----------|----------------|-----------|----------------|---------|----------|--|--|
| Code | EIA Code | L              | W₁        | W <sub>2</sub> | Н       | Z        |  |  |
| R    | 2012-09  | 2.0 ±0.2       | 1.25 ±0.2 | 0.9 ±0.1       | 0.95max | 0.5 ±0.2 |  |  |
| S    | 3216-12  | 3.2 ±0.2       | 1.6 ±0.2  | 1.2 ±0.1       | 1.2max  | 0.8 ±0.3 |  |  |
| Т    | 3528-12  | 3.5 ±0.2       | 2.8 ±0.2  | 2.2 ±0.1       | 1.2max  | 0.8 ±0.3 |  |  |
| V    | 6032-15  | 6.0 ±0.3       | 3.2 ±0.3  | 2.2 ±0.1       | 1.5max  | 1.3 ±0.3 |  |  |
| w    | 7343-18  | 7.3 ±0.3       | 4.3 ±0.3  | 2.4 ±0.1       | 1.8max  | 1.3 ±0.3 |  |  |





# **●** Standard value and Case size

# **Ultra Flat Low Profile Tantalum Chip Capacitors**

# STANDARD VALUE AND CASE SIZE

|          | W.V | 4V   | 6.3V    | 10V     | 16V  |
|----------|-----|------|---------|---------|------|
| Cap.(μF) |     | (0G) | (OJ)    | (1A)    | (1C) |
| 4.7      | 475 |      |         |         |      |
| 6.8      | 685 |      |         |         | (S)  |
| 10       | 106 |      |         | (S)     | (T)  |
| 15       | 156 |      |         |         |      |
| 22       | 226 | S,T  | NEW S   | (S),(T) | (T)  |
| 33       | 336 | S,T  | NEW S,T | NEW T   |      |
| 47       | 476 | T    | NEW T   | (T)     |      |
| 68       | 686 | (T)  | (T)     |         |      |
| 100      | 107 | (T)  |         |         |      |
| 150      | 157 |      |         |         |      |

()Under Development

New products (2005.01~) are shown in blue.

Environmentally friendly tantalum chip capacitors with lead-free terminal/Conform to RoHS





# RELIABILITY TEST CONDITION

| NO | ITEMS                    | TEST CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                    | PERFORMANCE                                                                           |
|----|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1  | RATED DC VOLTAGE         | -55°C ~ +85°C                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5∼35V                                                                               |
| 2  | CAPACITANCE              | MEASURING FREQUENCY: 120±12Hz  MEASURING VOLTAGE: 0.5Vrms + 0.5~2V DC  MEASURING CIRCUITS: EQUIVALENT SERIES  CIRCUIT                                                                                                                                                                                                                                                                                                             | CAPACITANCE RANGE $0.1 \sim 330 \mu\text{F}$ TOLERANCE ON CAP. $\pm 10\%, \ \pm 20\%$ |
| 3  | TANGENT OF LOSS<br>ANGLE | MEASUREMENT SHALL BE MADE UNDER THE SAME CONDITIONS AS THOSE GIVEN FOR THE MEASUREMENT OF CAPACITANCE.                                                                                                                                                                                                                                                                                                                            |                                                                                       |
| 4  | LEAKAGE CURRENT          | THE RATED DC VOLTAGE SHALL BE APPLIED TO TERMINALS ACROSS THE TEST CAPACITOR Cx, BY THE METHOD AS SHOWN BELOW. THE LEAKAGE CURRENT SHALL THEN BE MEASURED AFTER CHARGE FOR 5 MIN.  MEASURING CIRCUITS  WHERE R <sub>s</sub> : STANDARD RESISTOR(PROTECTIVE R :1KΩ)  C: DC VOLTMETER OR ELECTRONIC VOLTMETER S1: DC POWER SUPPLY SWITCH S2: PROTECTIVE SWITCH FOR A AMMETER Cx: TEST CAPACITOR  A: DC AM-METER FOR LEAKAGE CURRENT | 0.01CV or 0.5//A WHICHEVER IS GREATER                                                 |
| 5  | IMPEDENCE                | AC VOLTAGE(0.5Vrms OR LESS) OF A FREQUENCY SPECIFIED ON NEXT PAGE SHALL BE APPLIED AND THE VOLTAGE DROP ACROSS CAPACITOR TERMINALS SHALL BE MEASURED THE IMPEDANCE SHALL BE CALCULATED BY THE FOLLOWING EQUATION. $Impedance  Z  = \frac{E}{I}$ E: VOLTAGE DROP ACROSS THE CAPACITOR TERMINALS I: CURRENT FLOWING THROUGH THE CAPACITOR (FREQUENCY: $100\pm10$ kHz)                                                               |                                                                                       |





| NO  | ITEMS      | TEST CONDITION                           |                      |          |       |                            |                            | PERFORMANCE |                                   |
|-----|------------|------------------------------------------|----------------------|----------|-------|----------------------------|----------------------------|-------------|-----------------------------------|
| .,, | 11210      | THE CA                                   | PACITOR S            |          |       |                            | N TO PRO                   |             | RES SPECIFIED                     |
|     |            | BELOW                                    |                      |          |       |                            |                            |             | ,                                 |
|     |            | STEP                                     | TEMP.                | DURATION | CAPAC | IGE IN<br>ITANCE<br>14 C ) | TANGEN<br>LOSS AN<br>(D.F. | NGLE        | LEAKAGE<br>CURRENT                |
|     |            | 1                                        | <b>25</b> ±2℃        |          | SPEC  | HIN<br>CIFIED<br>RANCE     | TABLE 1<br>PAGE            |             | WITHIN<br>ORIGINAL<br>LIMIT       |
| 6   | STABILITY  | 2 -                                      | 55 ° ℃               | 2 HOURS. |       | 0% OF<br>VALUE             | TABLE 1<br>PAGE            | -           | N/A                               |
|     |            | 3                                        | <b>25</b> ±2℃        | 25 MIN.  |       |                            |                            |             |                                   |
|     |            | 4 +                                      | +85 <sup>+3</sup> ℃  | 2 HOURS. |       | 10% OF<br>VALUE            | TABLE 1<br>PAGE            | _           | WITHIN 10X<br>ORIGINAL<br>LIMIT   |
|     |            | 5 4                                      | +125 <sup>+3</sup> ℃ | 2 HOURS. |       | 12% OF<br>VALUE            | TABLE 1<br>PAGE            |             | WITHIN 12.5X<br>ORIGINAL<br>LIMIT |
| 7   | SURGE TEST | 5 +125 °C 2 HOURS. INITIAL VALUE DAGE 13 |                      |          |       |                            |                            |             |                                   |





| NO | ITEMS                               | TEST CONDITION                                                                                                                                                                                                                                                                                                                                                                  | PERFORMANCE                                                                                                                                                                                                                                    |
|----|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | DERATING<br>VOLTAGE                 | WHEN OPERATING AT HIGH TEMPERATURE RANGE FROPERATION SHALL BE CARRIED OUT AT A DERATED VIDERATING VOLTAGE VIDERATING VOLTAGE VIDERATING BY THE FOLLOWING EQUATION VOLTAGE DERATING $\begin{pmatrix} 100 \\ 80 \\ 40 \\ 20 \\ 0 \end{pmatrix}$ OPERATING TEMPERATURE $= Vr - \frac{Vr - Vd}{40}(T - 85)$ WHERE Vt: DERATED VOLTAGE AT ANY TEMP. BETWE Vr: RATED VOLTAGE AT 125°C | VOLTAGE OR LESS EN 85°C AND 125°C N 125                                                                                                                                                                                                        |
| 9  | ELECTRODE<br>(TERMINAL<br>STRENGTH) | APPLY PRESSURE IN THE DIRECTION OF THE ARROW AT A RATE OF ABOUT 0.5MM/SEC. UNTIL IT REACHES A BENT WIDTH OF 3MM AND HOLD FOR 30 SEC. THE TEST BOARD SHALL BE IEC 40(S) 541. FOR OTHER PROCEDURES REFER TO IEC 40(S) 541.  Pressure rod  10  20  Board                                                                                                                           | THERE SHALL BE NO EVIDENCE OF MECHANICAL DAMAGE. ELECTRICAL CHARACTERISTICS SHALL SATISFY THE INITIAL REQUIREMENT. IF THERE ARE ELECTRODES ON BOTH SURFACES, IT SHALL SATISFY THE ABOVE REQUIREMENT ON WHICHEVER SURFACE IT MAY BE FIXATED ON. |





| NO | ITEMS                                          | TEST CONDITION                                                                                                                                                                                                                                                                          | PERFORMANCE                                                                                                                                                                                                                                    |
|----|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | ADHESION<br>(ELECTRODE<br>PEELING<br>STRENGTH) | A STATIC LAOD OF 19.6N USING A R0.5 SCRATCH TOLL SHALL BE APPLIED ON THE CORE OF THE COMPONENT AND IN THE DIRECTION OF THE ARROW AND HOLD FOR 5 SEC. THE TEST BOARD SHALL BE IEC 40(S)541. HOWEVER THE BASE MATERIAL SHALL BE G-10 or FR-4 (ANSI GRADE)  Scratch tool  R0.5  Chip  Chip | THERE SHALL BE NO EVIDENCE OF MECHANICAL DAMAGE. ELECTRICAL CHARACTERISTICS SHALL SATISFY THE INITIAL REQUIREMENT. IF THERE ARE ELECTRODES ON BOTH SURFACES, IT SHALL SATISFY THE ABOVE REQUIREMENT ON WHICHEVER SURFACE IT MAY BE FIXATED ON. |
| 11 | CORE BODY<br>STRENGTH                          | A ROD OF 9.8N USING A R0.5 PRESSURE ROD SHALL BE APPLIED TH THE CENTER IN THE DIRECTION OF THE ARROW AND HOLD FOR 10 SEC  Pressure  R0.5  Chip  L > W                                                                                                                                   | THERE SHALL BE NO EVIDENCE OF MECHANICAL DAMAGE. ELECTRICAL CHARACTERISTICS SHALL SATISFY THE INITIAL REQUIREMENT.                                                                                                                             |



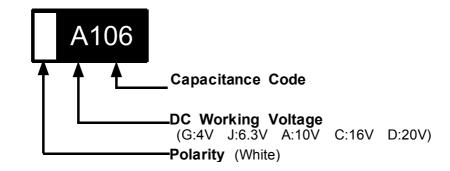


| NO | ITEMS                          | TEST CONDITION                                                                                                                                                                                                                                                                                                                                                        | PERFORMANCE                                                                                                                                                   |
|----|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | SOLDERABILITY<br>[Pb-free]     | SOLDER TEMPERATURE : 245±5 ℃ DIP TIME : 3±0.5 SEC. SOLDER : Sn-3Ag-0.5Cu FLUX : ROSIN(KSM2951)+Solvent(ISA) (ROSIN 25WT%)                                                                                                                                                                                                                                             | MORE THAN 95% OF THE<br>TERMINAL SURFACE MUST BE<br>SOLDERED NEWLY.                                                                                           |
|    | RESISTANCE                     | PREHEAT: 100~110°C FOR 30 SEC.  TEMPERATURE: 260±5°C  DIP TIME: 10 ±1 SEC  ALL SAMPLES SHALL BE DIPPED IN SOLDER  BATH. MEASUREMENT SHALL BE MADE AT  ROOM TEMPERATURE AFTER 1~2 HOURS OF  COOLING TIME.                                                                                                                                                              | CHANGE IN CAPACITANCE: ±5% OF INITIAL VALUE TANGENT OF LOSS ANGLE: LEAKAGE CURRENT: APPEARANCE: THERE SHALL BE NO EVIDENCE OF MECHANICAL DAMAGE.              |
| 13 | TO SOLDERING<br>HEAT           | CONVECTION REFLOW  PREHEAT: 150~190°C FOR 130 SEC.  PEAK TEMPERATURE: 260±5°C FOR 10 SEC.  METHOD: SAMPLES SHALL BE PASSED  REFLOW 3 TIMES.  MEASUREMENT SHALL BE MADE AT ROOM  TEMPERATURE AFTER 3~4 HOURS OF  COOLING TIME.                                                                                                                                         | Change in capacitance: ±10% of initial value Tangent of loss angle: Leakage Current:                                                                          |
| 14 | RESISTANCE<br>TO<br>CLEAN TEST | IMMERSION CLEANING THE CAPACITOR SHALL BE CLEANED AT ROOM TEMPERATURE FOR 60sec. USING ISOPROPYL ALCOHOL                                                                                                                                                                                                                                                              | THERE SHALL BE NO EVIDENCE OF MECHANICAL DAMAGE. AND MARKING SHALL BE LEGIBLE. ELECTRICAL CHARACTERISTICS SHALL SATISFY THE INITIAL REQUIREMENT.              |
| 15 | VIBRATION                      | FREQUENCY: 10 to 55 to 10Hz (in 1 min.) MAX AMPLITUDE: 1.5 mm.  DIRECTION OF VIBRATION: IN DIRECTION OF X,Y AND Z AXES TIME: 2 HOURS EACH DIRECTION AND 6 HOURS IN TOTAL DURING THE LAST 30 min. OF VIBRATION IN EACH DIRECTION, THE CAPACITANCE SHALL BE MEASURED 3 TO 5 TIMES. FOR OTHER PROCEDURES REFER TO IEC Pub. 68-2-6.  MOUNTING METHOD SOLDER ALUMINA BOARD | CHANGE IN CAPACITANCE: WITHIN: ±5% OF THE INITIAL VALUE TANGENT OF LOSS ANGLE:  LEAKAGE CURRENT:  APPEARANCE: THERE SHALL BE NO EVIDENCE OF MECHANICAL DAMAGE |

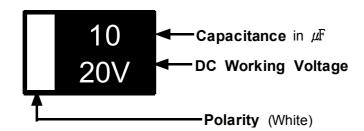




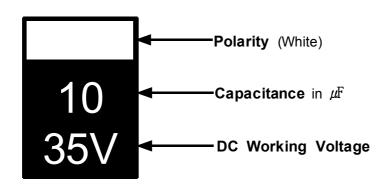
| NO | ITEMS                                                                                       |                                                                                                                                                                               | TEST CONDIT                                                                                                          | ION                                                                                              |                                                                                    | PERFORMANCE                       |
|----|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|
| 16 | MOISTURE<br>RESISTANCE                                                                      | TEMPERATU HUMIDITY O ELECTRICAL AFTER BEIN FOR 1~2 H                                                                                                                          | ITOR SHALL BE STORE OF 40±2°C ANIFE OF 40±2°C ANIFE OF 60% TO 95% FOR BOARD AT ROOFF OURS. FOR OTHER EC Pub. 68-2-2. | CHANGE IN CAPACITANCE: WITHIN: ±10% OF THE INITIAL VALUE TANGENT OF LOSS ANGLE: LEAKAGE CURRENT: |                                                                                    |                                   |
| 17 | TEMPERATURE VOLTAGE TIME  85°C RATED VOLTAGE 2,000 HOURS  125°C DERATED VOLTAGE 2,000 HOURS |                                                                                                                                                                               |                                                                                                                      |                                                                                                  | CHANGE IN CAPACITANCE : WITHIN : ±10% OF THE INITIAL VALUE TANGENT OF LOSS ANGLE : |                                   |
|    |                                                                                             | CIRCULATING                                                                                                                                                                   | ITOR SHALL BE PLA<br>G AIR OVEN AT AN<br>. MEASUREMENTS :<br>G STORED AT ROC<br>DURS.                                | LEAKAGE CURRENT :                                                                                |                                                                                    |                                   |
| 18 | STORAGE AT<br>LOW<br>TEMPERATURE                                                            | TEMPERATU<br>WITHOUT LO<br>ELECTRICAL                                                                                                                                         | . MEASUREMENTS :<br>G STORED AT ROO                                                                                  | ±8 HOURS                                                                                         | ELECTRICAL CHARACTERISTICS SHALL SATISFY THE INITIAL REQUIREMENT.                  |                                   |
|    |                                                                                             | STEP                                                                                                                                                                          | TEMPERATURE                                                                                                          |                                                                                                  | TIME                                                                               |                                   |
|    |                                                                                             | 1                                                                                                                                                                             | -55 0 ℃                                                                                                              | 3                                                                                                | 30 ±3 MIN                                                                          | CHANGE IN CAPACITANCE :           |
|    |                                                                                             | 2                                                                                                                                                                             | <b>25</b> ± <b>5</b> ℃                                                                                               | ,                                                                                                | 15 ±2 MIN                                                                          | WITHIN: ±10% OF THE INITIAL VALUE |
| 19 | Thermal Shock                                                                               | 3                                                                                                                                                                             | 125 <sup>0</sup> ℃                                                                                                   | 3                                                                                                | 30 ±3 MIN                                                                          | TANGENT OF LOSS ANGLE :           |
| 19 | Thermal Shock                                                                               | 4                                                                                                                                                                             | <b>25</b> ± <b>5</b> ℃                                                                                               | ,                                                                                                | 15 ±2 MIN                                                                          | LEAKAGE CURRENT :                 |
|    |                                                                                             | THE CAPACITOR SHALL BE SUBJECTED TO EACH SPECIFIED TEMPERATURE FOR EACH SPECIFIED TIME IN THE TABLE ABOVE THESE 4 STEP CONSTITUTES ONE CYCLES SHALL BE PERFORMED CONTINUOUSLY |                                                                                                                      |                                                                                                  |                                                                                    |                                   |







# **PACKAGING**

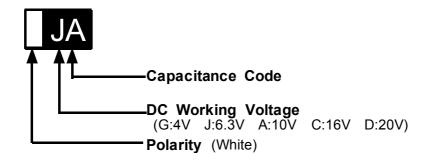
# MARKING


#### **▶** S CASE



#### **▶** T CASE




#### **▶ V,W CASE**







# ► R CASE

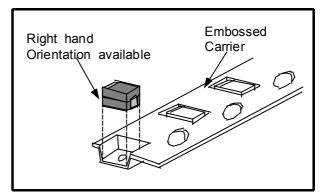


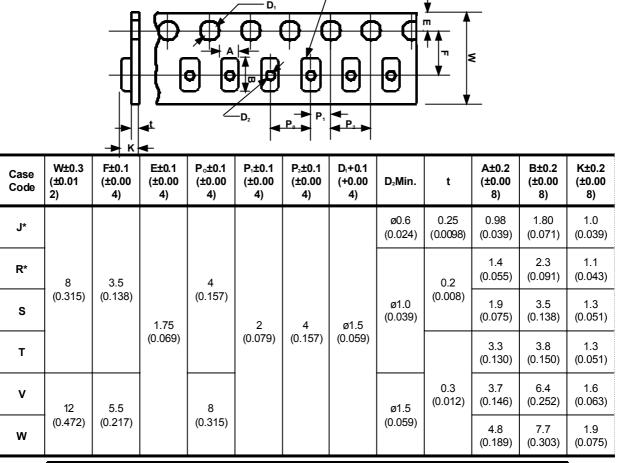
| Capacitance Range                          | 1 DIGIT          | 2 DIGIT          |
|--------------------------------------------|------------------|------------------|
| < 1.0 <i>⊯</i>                             | A Small Letter   | A Small Letter   |
| 1.0 <sup>µF</sup> ≤ Cap.< 10 <sup>µF</sup> | A Capital Letter | A Small Letter   |
| ≥ 10 µF                                    | A Capital Letter | A Capital Letter |

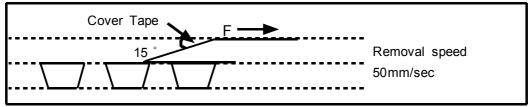
# [Code Reference]

| VμF  | 4  | 6.3 | 10 | 16 | 20 |
|------|----|-----|----|----|----|
| 0.22 | gj | jj  | aj | cj |    |
| 0.33 |    |     |    |    |    |
| 0.47 | gs | js  | as | cs | ds |
| 0.68 | gw | jw  | aw | cw | dw |
| 1.0  | Ga | Ja  | Aa | Ca |    |
| 1.5  |    |     |    |    |    |
| 2.2  | Gj | Jj  | Aj | Cj |    |
| 3.3  | Gn | Jn  | An |    |    |
| 4.7  | Gs | Js  | As | Cs |    |
| 6.8  | Gw | Jw  |    |    |    |
| 10   | GA | JA  | AA |    |    |
| 15   |    |     |    |    |    |
| 22   | GJ | JJ  |    |    |    |




**Embossed** 

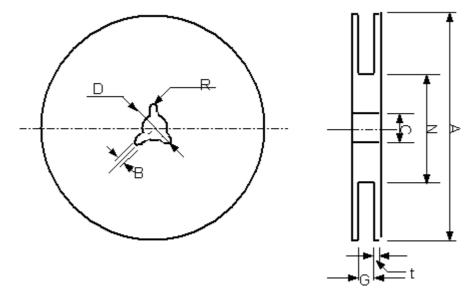




#### EMBOSSED PLASTIC TAPE

The tantalum chip capacitors shall be packaged in tape and reel form for effective use.

- Tape : Semitransparent embossed plastic
- Cover tape: Attached with press, polyester
- The tension of removing the cover tape,  $F{=}10\,{\sim}\,70\,g$












# ● REEL DIMENSION



| Tape<br>Width | A±2<br>(±0.079) | N Min.         | C±0.5<br>(±0.020) | D±0.5<br>(±0.020) | B±051<br>(±0.020) |               | t+0.5<br>(±0.020) | R               |
|---------------|-----------------|----------------|-------------------|-------------------|-------------------|---------------|-------------------|-----------------|
| 8mm           | ø178            | ø70<br>(2.756) | ø13               | ø21<br>(0.827)    | 2<br>(0.079)      | 10<br>(0.394) | 2<br>(0.079)      | 0.99<br>(0.039) |
| 12mm          | m (7)           | ø60<br>(2.362) | (0.512)           |                   |                   | 14<br>(0.551) |                   |                 |
| 8mm           | ø330            | ø80            | ø13               | ø21               | 2                 | 10<br>(0.394) | 2                 | 0.99            |
| 12mm          | (13)            | (3.150)        | (0.512)           | (0.827)           | (0.079)           | 14<br>(0.551) | (0.079)           | (0.039)         |

| Case Size reference | 180mm(7") reel | 330mm(13") reel |
|---------------------|----------------|-----------------|
| J                   | 4,000pcs       | -               |
| R                   | 3,000pcs       | -               |
| S, T                | 2,000pcs       | 8,000pcs        |
| v, w                | 500pcs         | 2,500pcs        |





# **APPLICATION MANUAL**

The operational attentions to the use of the tantalum capacitors are as follows:

- Electrical
- Environmental
- Conditions for mounting on equipment and circuit boards
- Mechanical vibration, shock

If the tantalum capacitors are used without satisfying any one of these conditions, the probability of short-circuiting, leakage current, ignition or other problems to occur increases. To avoid such problems, observe the following precautions when using the tantalum capacitors.

#### OPERATING VOLTAGE

- ▶ The voltage derating factor should be as great as possible. Under normal conditions, the operating voltage should be reduced to 50% or less of the rating. It is recommended that the operating voltage be 30% or less of the rating, particularly when the tantalum capacitors are used in a low-impedance circuit (see Figs. 1, 2, and 3).
- ▶ For circuits in which a switching, charging, discharging, or other momentary current flows, it is recommended that the operating voltage be 30% or less of the rating, with a resistor connected in series to limit the current to 300 mA or less.
- ▶ When the tantalum capacitors are to be used at an ambient temperature of higher than 85°C, the recommended operating range shown in Fig. 3 should not be exceeded.

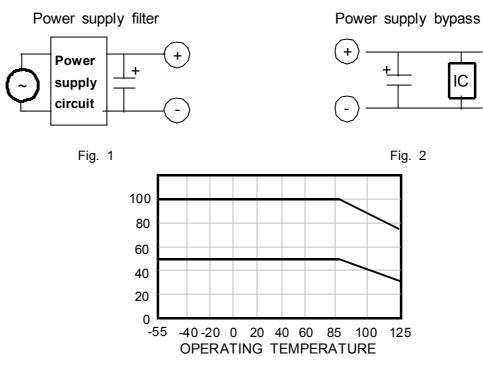



Fig. 3





#### RIPPLE

The maximum permissible ripple voltage and current are related to the ratings case size.

Please consult us detail in formations.

#### **▶** Ripple Current

The maximum permissible ripple current, IMAX, is calculated as follows:

$$I_{MAX} = \sqrt{\frac{P_{MAX}}{ESR(f)}}$$

where:

MAX : Maximum permissible capacitor ripple current (Arms).

PMAX: Maximum permissible capacitor power loss (W).

Varies with the ambient temperature and case size.

Calculated according to Table

ESR(f): Capacitor equivalent series resistance ( $\Omega$ ).

Since the ESR(f) value varies with the ripple frequency, however, the following correction must be made in accordance with the operating frequency (see Fig. 4).

$$ESR(f) = K \cdot ESR(120)$$

K: Coefficient for the operating frequency (Fig. 4).

**ESR**(120) = Tan 
$$\delta$$
 · Xc =  $\frac{\text{Tan }\delta}{2\pi fC}$ 

where:

ESR(120): Equivalent series resistance at 120 Hz ( $\Omega$ ).

**X**c : Capacitive reactance at 120 Hz ( $\Omega$ ).

C: Electrostatic capacitance at 120 Hz (μF).

f: Operating frequency (Hz).

Table.1 Maximum permissible power loss values ( $P_{\text{MAX}}$ ) by case size

| Ambient         | P <sub>MAX</sub> (W) |       |       |       |       |       |  |
|-----------------|----------------------|-------|-------|-------|-------|-------|--|
| temperature (℃) | J                    | Р     | S     | Т     | U     | V     |  |
| 25              | 0.015                | 0.015 | 0.030 | 0.030 | 0.030 | 0.050 |  |
| 55              | 0.010                | 0.010 | 0.019 | 0.019 | 0.019 | 0.032 |  |
| 85              | 0.005                | 0.005 | 0.010 | 0.010 | 0.010 | 0.018 |  |





Table.2 Hz VS K

| Frequency | K    |
|-----------|------|
| 120       | 1.0  |
| 400       | 0.8  |
| 1k        | 0.65 |
| 10k       | 0.50 |
| 20k       | 0.45 |
| 40k       | 0.43 |
| 100k      | 0.40 |
| 1M        | 0.35 |

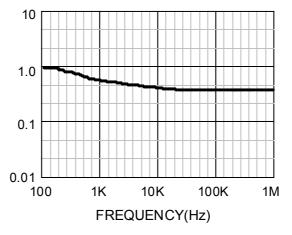
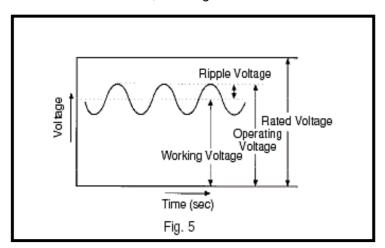




Fig.4 Correction Coefficient(K)

# **▶** Ripple Voltage

If an excessive ripple voltage is applied to the tantalum capacitors, their internal temperature rises due to Joule heat, resulting in the detriment of their reliability.



- The tantalum capacitors must be used in such a conditions that the sum of the Working Voltage and ripple voltage peak values does not exceed the rated voltage (Fig. 5)
- ➤ The maximum permissible ripple voltage varies with the rated voltage. Ensure that ripple voltage does not exceed the values shown in Figs 6 and 7. If, however, the capacitors are used at a high temperature, the maximum permissible ripple voltage must be calculated as follows:

 $Vrms(at 55^{\circ}C) = 0.7 \times Vrms(at 25^{\circ}C)$ 

 $Vrms(at 85^{\circ}C) = 0.5 \times Vrms(at 25^{\circ}C)$ 

Vrms(at 125 $^{\circ}$ C) = 0.3 x Vrms(at 25 $^{\circ}$ C)





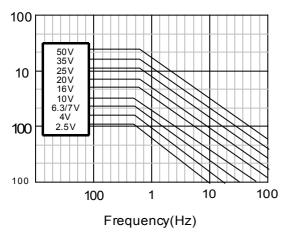



Fig.6 Maximum permissible ripple voltage (P,A,B)

Fig.7 Maximum permissible ripple voltage (C,D)

#### REVERSE VOLTAGE

Solid tantalum capacitors are polarized device and may be permanently damaged or destroyed, if connected with the wrong polarity.

- ➤ The tantalum capacitors must not be operated and changed in reverse mode. And also the capacitors must not be used in an only AC circuit.
- ➤ The tantalum capacitor dielectric has a rectifying characteristics. Therefore, when a reverse voltage is applied to it, a large current flows even at a low reverse voltage. As a result, it may spontaneously generate heat and lead to shorting.
- When using the capacitors in a circuit in which a reverse voltage is applied, consult your local SAMSUNG ELECTRO-MECHANICS agent. If the application of an reverse voltage is unavoidable, it must not exceed the following values.

At 20°C: 10% of the rated voltage of 1 V, whichever smaller.

At 85°C: 5% of the rated voltage or 0.5 V, whichever smaller.





#### RELIABILITY OF TANTALUM CAPACITORS

#### ▶ General

The failure rate of the tantalum capacitor varies with the digression ratio, ambient temperature, circuit resistance, circuit application, etc.

Therefore, when proper selections are made so as to afford additional margins, higher reliability can be derived from the tantalum capacitors. Some examples of actual failure rates are presented below for your reference.

#### ► Failure Rate Calculation Formula

The tantalum capacitors are designed to work at their basic failure rates shown in Table 3 that prevail when the rated voltage is applied for 1000 hours at 85°C.

Table 3 Basic failure rate

| TYPE    | Classification                           | Basic failure rate |  |
|---------|------------------------------------------|--------------------|--|
| SCE,SVE | Low ESR type                             |                    |  |
| SCM,SVM | SCM,SVM Ultra-Miniaturization Type(0603) |                    |  |
| SCL     | Low-profile Type                         | 40/ /40 001        |  |
| SCS,SVS | Small Type                               | 1%/1000h           |  |
| SCN,SVN | Standard type                            |                    |  |
| PC*     | Conductive Polymer Type                  |                    |  |

#### 

$$\lambda$$
use =  $\lambda$ 85 x K<sub>V</sub> x K<sub>R</sub>

 $\lambda$ use : Estimated capacitor failure rate under the operating conditions.

λ85 : Basic failure rate (Table 3)

 $\boldsymbol{K}_{\boldsymbol{V}}$  : Failure rate correction coefficient by the ambient temperature and derating factor.

 $K_R$ : Failure rate correction coefficient by the circuit resistance, which is the series-connected resistance divided by the voltage applied to the capacitor. This resistance is connected in series when the power supply side is viewed from the capacitor side.

 $K_{(derating\ factor)}$ =operating voltage/rated voltage





#### RELIABILITY PREDICTION

Solid tantalum capacitors exhibit no degration failure mode during shelf storage and show a constantly decreasing failure rate(i.e., absence of wearout mechanism) during life tests. this failure rate is dependent upon three important application conditions:DCvoltage, temperature, and circuit impedance.

Estimates of these respective effects are provided by the reliability nomograph. (Figure 8.)

The nomograph relates failure rate to voltage and temperature while the table relates failure rate to impedance. These estimates apply to steady-state DC condition, and they assume usage within all other rated conditions.

Standard conditions, which produce a unity failure rate factor, are rated voltage,  $+85^{\circ}$ C, and 0.1 ohm-per-volt impedance.

While voltage and temperature are straight-forward, there is sometimes difficulty in determining impedance. What is required is the circuit impedance seen by the capacitor. If several capacitors are connected in parallel, the impedance seen by each is lowered by the source of energy stored in the other capacitors. Energy is similarly stored in series inductors.

Voltage "de-rating" is a common and useful approach to improved reliability. It can be persued too far, however, when it leads to installation of higher voltage capacitors of much larger size.

It is possible to lose more via higher inherent failure rate than is gained by voltage derating. SAMSUNG typically recommends 50% derating, especially in low impedance circuits.

Failure rate is conventionally expressed in units of percent per thousand hours. As a sample calculation, suppose a particular batch of capacitors has a failure rate of 0.5% / Khr under standard conditions.

What would be the predicted failure rate at 0.7times rated voltage,  $60^{\circ}$ C and  $0.6\Omega/V$ ?

The nomgraph gives a factor of  $7 \times 10^{-2}$  and the table gives a factor of 0.4.

The failure rate estimate is then:

$$0.5 \times 7 \times 10^{-2} \times 0.4$$
  
= 1.4 × 10-2 or 0.014%/Khr

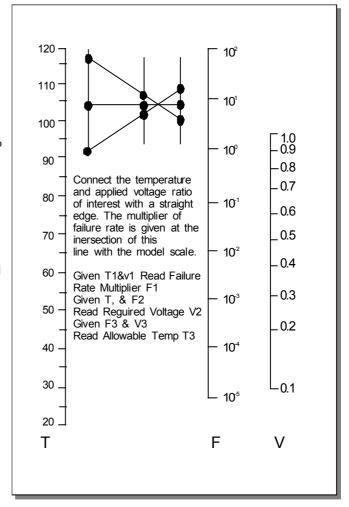



Fig.8 Reliability Nomograph





Table 4 Circuit Impedance Reliability Factors

| Circuit Impedance<br>(ohms/volt) | Failure Rate Impedance (multiplying factor) |
|----------------------------------|---------------------------------------------|
| 0.1                              | 1.0                                         |
| 0.2                              | 0.8                                         |
| 0.4                              | 0.6                                         |
| 0.6                              | 0.4                                         |
| 0.8                              | 0.3                                         |
| 1.0                              | 0.2                                         |
| 2.0                              | 0.1                                         |
| 3 or greater                     | 0.07                                        |

#### MOUNTING PRECAUTIONS

# **▶** Limit Pressure on Capacitor Installation with Mounter

A capacitor that has been damaged should be discarded to avoid later problems resulting from mechanical stress.

Pressure must not exceed 4.9 N with a tool end diameter of 1.5mm when applied to the capacitors using an absorber, centering tweezers, or the like. An excessively low absorber setting position would result in not only the application of undue force to the capacitors but capacitor and other component scattering, circuit board wiring breakage, and / or cracking as well, particularly when the capacitors are mounted together with other chips having a height of 1 mm or less.

#### ► Flux

- > Select a flux that contains a minimum of chlorine and amine.
- ▷ After flux use, the chlorine and amine in the flux remain and must therefore be removed.

#### **▶** Recommended Soldering Pattern Dimensions

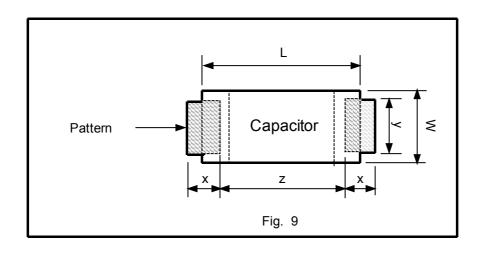







Table 4 Recommended soldering pattern dimensions(mm)

| Dimensions | ons Capacitors size |      | Pattern dimensions |     |     |  |
|------------|---------------------|------|--------------------|-----|-----|--|
| Case       | L                   | W    | х                  | у   | Z   |  |
| J          | 1.6                 | 0.85 | 0.9                | 1.0 | 0.7 |  |
| Р          | 2.0                 | 1.25 | 1.2                | 1.1 | 0.8 |  |
| S          | 3.2                 | 1.6  | 1.6                | 1.2 | 1.2 |  |
| T          | 3.5                 | 2.8  | 1.6                | 2.2 | 1.4 |  |
| U          | 5.8                 | 3.2  | 2.3                | 2.4 | 2.4 |  |
| V          | 7.3                 | 4.3  | 2.3                | 2.6 | 3.8 |  |

# ► Chip Soldering Temperature and Time

Capacitors are capable of withstanding the following soldering temperatures and conditions;

Time : 5 seconds or less

▷ Reflow soldering see figures

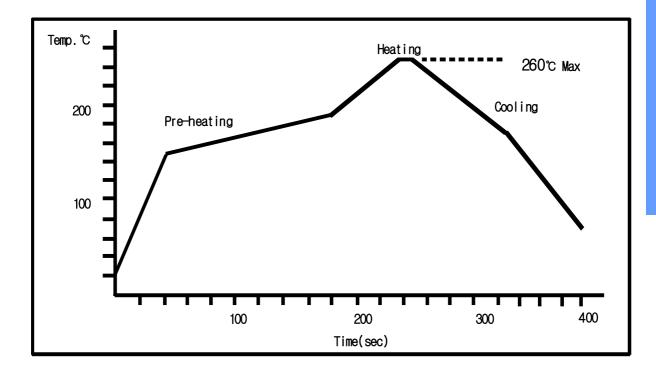



Figure: Typical Temperature Profile of Reflow Soldering (pb-free)





#### Soldering with a soldering iron

The use of a soldering iron should be avoided wherever possible. If it is unavoidable, follow the instructions set forth in Table 5. The time of soldering with an iron should be one.

Table 5

| Soldering-iron tip temperature | <b>350</b> ℃ <sub>мах</sub> |
|--------------------------------|-----------------------------|
| Time                           | 3 sec MAX                   |
| Soldering-iron power           | 30 W MAX                    |

#### ► Cleaning after Mounting

The following solvents are usable when cleaning the capacitors after mounting. Never use a highly active solvent.

- Halogen organic solvent (HCFC225, etc.)
- Alcoholic solvent (IPA, ethanol, etc.)
- Petroleum solvent, alkali saponifying agent, water, etc.

Circuit board cleaning must be conducted at a temperature of not higher than 50°C and for an immersion time of not longer than 30 minutes. When an ultrasonic cleaning method is used, cleaning must be conducted at a frequency of 48 kHz or lower, at an vibrator output of 0.02 W/cm3, at a temperature of not higher than 40°C, and for a time of 5 minutes or shorter.

- NOTE 1: Care must be exercised in cleaning process so that the mounted capacitor will not come into contact with any cleaned object or the like or will not get rubbed by a stiff brush or the like. If such precautions are not taken particularly when the ultrasonic cleaning method is employed, terminal breakage may occur.
- NOTE 2: When performing ultrasonic cleaning under conditions other than stated above, conduct adequate advance checkout.

#### OTHER

- ▷ For further details, refer to EIAJ RCR-2368, Precautions and Guidelines for Using Electronic Device Tantalum Capacitors.
- ▷ If you have any questions, feel free to contact your local SAMSUNG ELECTRO-MECHANICS agent.